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 POPULATION DENSITIES?
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 U.S. Geological Survey, Western Ecological Research Center, 160 North Stephanie Street, Henderson, Nevada 89074 USA
 2 Department of Biology, MS 315, University of Nevada, Reno, Nevada 89557 USA

 Abstract. The federally listed desert tortoise (Gopherus agassizii) is currently monitored
 using distance sampling to estimate population densities. Distance sampling, as with many
 other techniques for estimating population density, assumes that it is possible to quantify the
 proportion of animals available to be counted in any census. Because desert tortoises spend
 much of their life in burrows, and the proportion of tortoises in burrows at any time can be
 extremely variable, this assumption is difficult to meet. This proportion of animals available to
 be counted is used as a correction factor (g0) in distance sampling and has been estimated from
 daily censuses of small populations of tortoises (6-12 individuals). These censuses are costly
 and produce imprecise estimates of g0 due to small sample sizes. We used data on tortoise
 activity from a large (N = 1 50) experimental population to model activity as a function of the
 biophysical attributes of the environment, but these models did not improve the precision of
 estimates from the focal populations. Thus, to evaluate how much of the variance in tortoise
 activity is apparently not predictable, we assessed whether activity on any particular day can
 predict activity on subsequent days with essentially identical environmental conditions.
 Tortoise activity was only weakly correlated on consecutive days, indicating that behavior was
 not repeatable or consistent among days with similar physical environments.

 Key words: activity modeling; detectability; distance sampling; Gopherus agassizii; monitoring; neural
 network modeling; power analysis.
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 Introduction

 In 1991, desert tortoise (Gopherus agassizii) popula-
 tions distributed north and west of the Colorado River

 were listed as "threatened" under the Endangered
 Species Act of 1973 (U.S. Fish and Wildlife Service
 1990). The recovery plan for this species recommended
 monitoring the effectiveness of management actions by
 assessing population sizes for one tortoise generation (25
 years). One criterion to delist this species is to
 demonstrate a statistically significant upward or stable
 trend in population size over a 25-year time period (U.S.
 Fish and Wildlife Service 1994).

 Range-wide monitoring of population densities of
 desert tortoises was initiated in 1996, using stratified
 random transects in all 14 Desert Wildlife Management
 Areas (DWM As) contained within the six Recovery Units
 (Appendix; U.S. Fish and Wildlife Service 1994, Ander-
 son et al. 2001). Population densities within DWM As
 have been calculated using "distance sampling" calcula-
 tions (Anderson et al. 2001, Buckland et al. 2001) as

 D = T^xpaxg0 (1)
 where D is the estimated density of animals, n is the

 number of animals observed on transects, / is the total
 length of the transect walked, and w is the width of the
 transect. In addition, this equation uses two functions to
 estimate how many animals are missed during the
 sampling as a function of (1) their distance from the
 transect (detectability, Pa; see Plate 1), and (2) their
 availability to be encountered by an observer (g0).
 Tortoises are frequently unavailable to be sampled
 because tortoises are cryptic and make extensive use of
 underground shelters.

 Desert tortoises spend much of the year in burrows
 even during the active season (Woodbury and Hardy
 1948, Nagy and Medica 1986, Bulova 1994), and usually
 only the proportion of the tortoise population that is
 above ground is sampled. This can lead to a violation of
 a critical assumption of the distance sampling technique,
 namely, that all animals on the line are found (Anderson
 et al. 2001, Buckland et al. 2001). Aboveground
 availability (g0) is currently estimated by monitoring
 the proportion of radiotelemetered animals (N = 6-12)
 that are visible to observers at several sites within the

 desert tortoise recovery units (Anderson et al. 2001).
 The goals of this study were: to identify the level of

 precision necessary to statistically detect trends in
 tortoise populations; to explore the error in density
 estimates that could be induced by estimating g0 from
 observing small focal populations; and to explore the
 extent to which modeling g0 using a suite of environ-
 mental conditions could improve estimates of go-

 Manuscript received 13 December 2005; revised 24 May
 2006; accepted 30 May 2006. Corresponding Editor: J. Van
 Buskirk.
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 Materials and Methods

 Power analysis

 To get an estimate of the precision necessary to
 satisfy the first U.S. Fish and Wildlife Service delisting
 criterion we conducted a power analysis to estimate the
 statistical power to detect growth in populations at
 different growth rates and with different degrees of
 error in the density estimates over a 25-year period.
 The power analysis used computer simulations (Link
 and Hatfield 1990) of population growth for popula-
 tions with a constant average growth rate. Simulated
 growth rates ranged from 1% to 5% annual growth in
 increments of 1% (Hatfield et al. 1996), and coefficients
 of variation for the density estimates ranged from 5%
 to 100% in increments of 5% for each subsequent
 analysis.

 Populations were simulated to grow at a specified
 average growth rate starting with 1000 individuals, and
 a population size was generated for each time step that
 was randomly modified according to a specified
 coefficient of variation. Thus, a population of Nt+\ at
 time (t + 1) was calculated as a product of the
 population one year prior (Nt) multiplied by the discrete
 population growth rate (X). Variation was then added to
 the resulting population estimate (Nj) by drawing a
 number from a random-normal distribution with a

 mean of TV and a specified coefficient of variation (CV):

 Nt+l=NtXf(k,CV). (2)

 We simulated population size over 25 years and then
 regressed the resulting annual population sizes against
 time. Statistical power was determined from the
 proportions of 1000 simulations of population growth
 with each set of population parameters (k and CV) that
 were significant with an alpha of 0.05 (Hatfield et al.
 1996).

 Source of data for calculating g0

 Approximately 1 50 adult desert tortoises were tracked
 weekly at one site near Las Vegas, Nevada, USA
 (Appendix). The tortoises were located approximately
 between 04:00 and 16:00, which generally bounded the
 daily activity times of tortoises. These animals were
 monitored over a three-year period (1997-1999) using
 hand-held radiotelemetry receivers (e.g., Telonics TR-2,
 Mesa, Arizona, USA). Radio transmitters (AVM
 models G3, SB2, or SB2-RL) were attached to tortoises
 in a manner similar to that described in Boarman et al.

 (1998). The body of the transmitter was attached (with
 epoxy) to the first costal scute, usually on the left side of
 the animal, to provide the best positioning of the
 antenna. The antenna was then affixed (with epoxy) to
 the center of each costal scute from front to rear,
 wrapping around the back of the animal and continuing
 forward on the opposite side. Silicone caulk was used to
 secure the antenna in the scute margins while allowing
 for growth of the animals (Boarman et al. 1998). All

 tortoises were numbered with a paper tag covered with
 clear epoxy, and the carapaces were notched on the
 marginal scutes by creating a small groove using a
 triangular file (Cagle 1939).

 When tortoises were located, the date, time, and the
 microhabitat of the animals were recorded. We catego-
 rized the microhabitats into four general categories: in
 the open, under vegetation, in a pallet (a shallow shelter
 that does not completely cover the tortoise, Bulova
 1994), or in a burrow. To approximate availability we
 further categorized each microhabitat as above ground
 (i.e., under vegetation or in the open), or below ground
 (i.e., in a burrow or a pallet) and calculated the
 proportion of animals above ground.

 Environment

 A weather station recorded environmental and

 operative temperatures (Te; Bakken et al. 1985) at a
 central location at the study site. Operative temperatures
 represent an estimated potential body temperature if the
 animals were to achieve a steady state under current
 environmental conditions (Tracy 1982, Bakken et al.
 1985, O'Connor et al. 2000). Operative temperatures
 were measured using painted cast aluminum models of
 both juvenile (carapace length [CL] = 80 mm), and adult-
 sized (CL = 240 mm) tortoises placed in full sun and in
 shaded microhabitats (Zimmerman et al. 1994). The
 amount of solar radiation was measured using a
 pyranometer (model number LI-200SA, LI-COR, Lin-
 coln, Nebraska, USA). Wind speed was measured at a
 height of 1 m from the surface with a cup anemometer
 (model number 03101, Campbell Scientific, Logan,
 Utah, USA). Air temperatures were measured at 10,
 20, and 40 cm above the ground with shielded thermo-
 couples (Christian and Tracy 1985). Soil temperatures
 were measured at the substratum surface, and at 10, 20,
 and 70 cm below the surface. All thermocouples were
 24-gauge type k (Omega Engineering, Stamford, Con-
 necticut, USA). Data were recorded using a CR-10X
 datalogger with an AM416 multiplexer (Campbell
 Scientific, Logan, Utah, USA).

 Average and variance of go with sample size

 We wanted to determine the possible error in the
 estimates of the proportion of tortoises above ground
 and available to be censused as a function of sample size.
 To do this we used the microhabitat locations that we

 categorized as above or below ground for 376 observa-
 tions of -120 tortoises from 24 May 1999 to 18 June
 1999. Animals that were found either in the open or
 under vegetation were classified as above ground, and
 animals that were in a burrow or a pallet were classified
 as below ground. Samples of these 376 observations
 ranging from 3 to 150 observations were drawn
 randomly, and the average and standard deviation of
 the locations were calculated. This was repeated with
 100 random draws (with replacement) of observations at
 each sample size.
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 Table 1. Sensitivity analyses of the input variables to the
 results of the Artificial Neural Network model.

 Inputs to model Influence on g0

 Maximum of large Te in shade 0.027
 Maximum of surface temp, in shade 0.020
 Average of large Te in sun 0.021
 Average of Tair (20 cm) in shade 0.017
 Maximum of small Te model in sun 0.016
 Average of small Te model in sun 0.014
 Average soil temp. (-30 cm) in sun 0.013
 Minimum of small Te model in shade 0.013
 Average of large Te model in shade 0.009
 Average of soil temp. (-10 cm) in sun 0.007
 Average of small Te model in shade 0.006
 Average soil temp. (-70 cm) in sun 0.005
 Minimum of small Te model in sun 0.005
 Maximum of large Te model in sun 0.003
 Maximum of surface temp, in sun 0.002
 Average of T^r (40 cm) in sun 0.002
 Average of wind speed (m/s) 0.001
 Average of T.dir (40 cm) in shade 0.001

 Notes: Air and soil temperatures are expressed in centimeters
 above or below the surface. The sensitivity analysis was
 performed by running the model with each input value set at
 one standard deviation above and below its mean, and
 measuring how much the output varied. The influence on the
 predicted proportion of animals active (g0) is the standard
 deviation of each output divided by the standard deviation of
 each input. Operative temperature is represented by Te, and air
 temperature is represented by Tair.

 We fitted a power function to the curve created by the

 standard deviations of the measurements (y =
 0.5479*-05678), and the first derivative of the fitted
 function (dy/dx = -03\\ Ijc"1'5678) indicated the number
 of samples at which relatively little change occurred in
 the reduction of the standard deviation as sample sizes
 increased.

 Model of go

 We used an Artificial Neural Network (ANN) to
 model daily tortoise activity (g0) as a function of 1 8 site-

 specific environmental variables recorded by the weather
 station. The environmental variables that we used as

 inputs included: daily values of maximum solar radia-
 tion, rainfall, average wind speed, and minimum,
 maximum, and average temperatures of air, soil, and
 operative temperature (re) models (Bakken et al. 1985).
 The model was constructed from 334 days of input using
 65% of the data for training, 25% for cross-validation,
 and 10% for testing the network. Specifically, the neural
 network was a back-propagating network consisting of
 one hidden layer of four processing elements and one
 hidden layer, using Tan-h transfer functions, with a
 momentum-learning-rate of 0.7 per epoch (Principe et
 al. 2000). We used weight decay to allow model inputs to
 drop out of the model when they did not contribute to
 the prediction of g0. The network was constructed using
 NeuroSolutions for Excel (Version 4.2, Neuro Dimen-
 sion, Gainesville, Florida, USA). This software normal-
 ized inputs prior to running the model.

 The relative influence of different inputs to the model
 was quantified by sensitivity analyses of each variable on
 the predicted outcome (Table 1). The sensitivity analysis
 consisted of running the model with each normalized
 input value set at one standard deviation above and
 below its mean, and measuring how much the output
 varied. The standard deviation of each output was then
 divided by the standard deviation of each input.

 Repeatability of g0

 To assess the repeatability of tortoise activity across
 time, we chose consecutive pairs of days from three
 years of observations with the criterion that the
 difference between the maximum operative temperature
 of the first and second day was not >5°C. The
 proportions of tortoises active on the first and second
 days were then regressed against one another to indicate
 the repeatability of percentage activity for the tortoise
 population on similar days.

 Results

 Power analysis

 Coefficients of variation of >12% around a growth
 rate of 1% per year would not allow enough statistical
 power (i.e., 0.8) to detect the trend over a 25-year period
 (Fig. 1). To achieve similar power for 2%, 3%, 4%, and
 5% annual growth rates the coefficients of variation of
 the population estimate would need to be less than or
 equal to ~ 25%, 35%, 45%, and 55%, respectively.

 Microhabitat use

 The proportions of animals that were found in
 underground microhabitats (pallets and burrows) during
 the part of the day when tortoises are active over the
 three-year study period ranged from 60% to 75%
 (Fig. 2). In addition, the numbers of animals found in
 different microhabitats differed among years (x2 = 324.3,
 df = 6, P < 0.0001). Tortoises used burrows much more
 than the other three microhabitats (Fig. 2).

 Fig. 1. Power to detect different growth trends in
 annualized population growth rates as a function of the
 coefficient of variation of the density estimates. Curves
 represent the power to detect different population growth rates
 from 1% to 5% growth.
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 The proportion of animals active varied annually,
 seasonally, weekly, and daily (Fig. 3). For example, high
 levels of spring activity in April and May of 1998 were
 not as great in either 1997 or 1999. The period of activity
 in the fall of 1997 (roughly October), was qualitatively
 higher than that seen in either of the other two years. The
 variation in daily activity was not consistent throughout
 the season, or among years. For example, the variation in
 the proportion of animals active during spring in 1997
 was greater than that for 1998. In all years, tortoises were
 generally more active during the morning hours.

 Average and variance of g0 with sample size

 Sample size had a large influence on the precision of
 the estimates of g0. With a sample size of 100, the
 proportion of animals active was very similar to the
 average of the population of 150 tortoises. However, as
 would be expected, the variance of the estimates was
 greater for smaller sample sizes. The reduction in the
 variance of the estimates of activity was not linearly
 related to the number of samples. A power function was
 fitted to the curve created by the standard deviations of
 the means with an explained variance of 97%. The rate of
 change of standard deviation (where the first derivative
 of the power function fit to the standard deviations
 approached 0) indicates that with at least 20-30 animals
 the variance in the estimate of g0 became nearly a
 constant at a low value. The sample size required to
 achieve a coefficient of variation in the estimate of g0 (let
 alone other sources of variation implicit in the sampling
 technique) of <12% (see previous power analysis) was
 -95 animals. This implies that focal populations may
 never be of sufficient size to estimate g0 precisely.

 Neural network model

 The neural network model of tortoise activity yielded
 a significantly correlated estimate of modeled g0 and
 measured g0 (^i,82 = 58.3, P < 0.0001), but explained
 only 42% of the variance in g0. This level of explained
 variance corresponded to a CV of -57% (by taking the
 RMSE/mean of the response variable), which would
 occlude trends in growth rates of >5% per year. The
 input variables to the model to which the outputs were
 most responsive included the maximum daily tempera-
 ture of the large Te model, the surface temperature in a
 shaded microhabitat, and the daily average of the large
 Te model in the sunny microhabitat (Table 1).

 Repeatability

 Activity of tortoises on consecutive days with similar
 climate was significantly correlated. However, this
 correlation explained only 29% of the variance (r =
 0.54) indicating that behavior may not be repeatable at
 the population level.

 Discussion

 The foremost criterion for desert tortoise populations
 to be delisted requires that there be a statistically

 Fig. 2. Percentage of observations of -150 free-ranging
 desert tortoises in three field seasons during the daytime hours
 at Bird Spring Valley, in southern Nevada. Tortoises were
 categorized as (1) in a burrow, (2) in a pallet, (3) under
 vegetation, or (4) in the open.

 significant upward or level trend in population size over
 a 25-year period (U.S. Fish and Wildlife Service 1994).
 The maximum reasonable population growth rate for
 tortoise populations has been estimated to be -1% per
 year under ideal reproductive conditions (U.S. Fish and
 Wildlife Service 1994), albeit population declines can
 occur at rates up to 30% in a single year (Longshore et
 al. 2003). Our power analysis indicated that to detect a
 trend over a 25-year time period with a 1% annual
 growth rate, the coefficient of variation about the
 density estimates would have to be 12% or less.

 Current estimates of population density from range-
 wide transect sampling for desert tortoises for the years
 2001 through 2005 have coefficients of variation that
 range from 9.5% to 56.2%, depending on the year and
 area sampled (U.S. Fish and Wildlife Service 2006).
 With this magnitude of variation, tortoise populations
 would have to increase at rates of at least 4% per year to
 detect an upward trend in a 25-year period with
 sufficient power (Cohen 1988). With such low potential
 growth rates and the high variance in population density
 estimates reported from the range-wide monitoring
 program, this criterion may be intractable.

 Another important result from this analysis is that it
 applies not only to the detection of increasing trends,
 but also decreasing ones. Thus, tortoise populations
 could decline at a rate of up to 4% per year, and that
 trend would still not be distinguishable from popula-
 tions with no statistical trend at all. Clearly more precise
 density estimates are necessary to make sound decisions
 regarding the recovery and conservation of this species,
 as the error present in the current sampling method is
 exceedingly high (Gerrodette 1987, Taylor and Gerro-
 dette 1993, Freilich et al. 2005).

 The difficulties of sampling desert tortoises for
 population densities largely result from the fossorial
 habits of the species (Freilich et al. 2000). Tortoises
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 Fig. 3. The proportion of animals active for each hour of the day calculated from daily tracking of 150 tortoises at Bird Spring
 Valley, Nevada. The proportion of tortoises active is denoted by the darkness of the color, where gray colors indicate low levels of
 activity, and black denotes high levels of activity. The white background indicates times when animals were not sampled by
 radiotelemetry.

 spend much of the year in underground burrows (Figs. 1
 and 3; Woodbury and Hardy 1948, Nagy and Medica
 1986, Bulova 1994), and the patterns of tortoise activity
 vary annually, seasonally, and daily (Fig. 3; Duda et al.
 1999, Freilich et al. 2000, Anderson et al. 2001), yet none
 of this variance is accounted for in estimates of g0 for
 population density estimates of tortoises. This is

 critically important because an improperly calculated
 g0 will impart significant error to density estimates. Both
 of the modifiers to the density estimation equation (Pa
 and go) are influenced by tortoise activity and the
 mechanisms determining patterns of activity (Eq. 1).
 The precision of the detectability estimate (Pa) calculat-
 ed by distance sampling is largely influenced by the
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 Plate 1. A desert tortoise that covered itself with sand seeking shade under a shrub. Photo credit: K. Nussear.

 numbers of animals encountered on transects. A sample
 must include at least 60-80 animals to estimate Pa with
 adequate precision using distance sampling (Buckland et
 al. 2001). To achieve sample sizes of 60-80 desert
 tortoises the established monitoring protocols have
 included animals found on the surface, as well as those
 in burrows. However, the animals in burrows are

 currently treated in the same way statistically as animals

 on the surface. Specifically, the probability of detecting
 burrows as a function of distance from the line, and the

 detectability of tortoises in those burrows have not been
 evaluated, but are assumed to be the same as detecting
 an animal on the surface. Additionally, estimates of the
 proportion of animals above ground (which should
 equal g0 m the strictest sense) are influenced by the
 sample size of focal populations, and by the times of
 year that tortoises are sampled (Fig. 3).

 In some years there may be so few tortoises active
 that the number of animals encountered on transects

 will be low, and thus the precision of the estimate of Pa
 will be low (e.g., Fig. 3, 1999). In other years, there
 may be high variability in the proportion of animals
 active as a function of the week of the year or time of
 day during the sampling period (e.g., Fig. 3, spring of
 1997). These mechanisms create an inherent lack of
 precision in the estimation of the availability of animals
 to be sampled, and this error will be incorporated into
 the estimates of tortoise density in unknown magni-
 tudes.

 Focal observations of 8-10 tortoises per site have
 been used to infer g0 during the sampling period. If focal
 populations are used, the number of animals included in
 the sample is important to the precision and accuracy of
 the go estimate. Monte Carlo simulations of g0
 measured from a population tracked by radiotelemetry
 of -150 animals indicate that the sampling error
 associated with samples of 8-12 animals (the number
 of focal animals used in many of the focal sites) may
 lead to errors in the estimation of g0 as high as 50%.
 Additionally, even if the focal populations are increased
 to 20 or 30 animals, the variance in the estimates of g0
 resulting from "snapshot" monitoring of focal animals
 remains as high as 25% (in this analysis). Indeed, a
 population of -100 tortoises would be required to
 achieve a coefficient of variation for g0 alone that was
 12%. Thus, precise estimates of g0 may require large
 focal groups that would be prohibitively costly, and may
 not reduce the error in the estimation of go sufficiently
 to increase the precision of annual density estimates to
 acceptable levels.

 We modeled the proportions of animals active on a
 given day as a function of several environmental
 variables related to the biophysical environment of
 desert tortoises using an Artificial Neural Network as
 one possible approach to create a more cost effective
 and precise means of estimating g0. Several other
 factors, such as forage availability, are likely to be
 important to quantifying tortoise activity; however the
 biophysical parameters that we included are likely to
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 define the thermal environment, which has been
 demonstrated to influence activity strongly (Zimmerman
 et al. 1994, Hillard 1996). This model had a high level of
 variance around the mean predictions. In fact, the
 amount of variation explained by our model is roughly
 equivalent to that expected using small focal popula-
 tions to estimate g0. Thus, our initial model does not
 create an improvement over using focal animals to
 estimate go-

 To test the precision with which it is possible to model
 go, we examined the repeatability of population level
 activity estimates, under similar environmental condi-
 tions by analyzing the proportion of tortoises that were
 active on consecutive days. Despite similar environmen-
 tal conditions, the proportion of tortoises active on
 consecutive days was only weakly correlated. This
 indicates that the behavior of tortoises is not especially
 predictable based upon environmental variables alone.
 This may place limitations on our ability ever to model
 tortoise activity at the population level.

 While our example highlights an approach to
 modeling activity as a surrogate for availability of desert
 tortoises, there are many animals that frequently have a
 reduced availability or observability (i.e., g(0) < 1) to
 sampling efforts. Examples in the literature include
 those from a variety of species, including cetaceans
 (Skaug et al. 2004), birds (Hone and Short 1988), large
 herding herbivores (Jachmann 2002), kangaroos (Pople
 et al. 1998), sea turtles (Gomez de Segura et al. 2006),
 lizards, and snakes (Rodda and Campbell 2002). For
 animals typically censused using areal surveys this is an
 especially relevant topic. Frequently, efforts to estimate
 availability/visibility involve modeling aspects of the
 animal's behavior; such as surfacing intervals in whales
 and sea turtles (Skaug et al. 2004, Gomez de Segura et
 al. 2006); differences in coloration of individuals, or herd
 behavior due to daily or seasonal differences in
 temperature, and detectability in large mammals (Bay-
 liss and Giles 1985, Hill et al. 1985, Jachmann 2002).
 Our approach stems from examining the behavior of the
 population as a function of key environmental drivers of
 behavior (Zimmerman et al. 1994).

 We think the need for modeling approaches extends
 beyond studies using transect methods to survey for an
 organism. For example, prior to 1999, survey efforts
 for desert tortoises consisted of a score of permanent
 study plots located throughout the Mojave that were
 surveyed, and densities were estimated using mark-
 recapture techniques. These surveys took place using a
 30-day marking phase, and a 30-day recapture phase
 (Berry 1986). Over a 60-day time period, tortoise
 behavior, and the resulting availability of these animals
 is likely to change. Seasonal changes in behavior will
 influence the precision of the density estimates as a
 smaller proportion of the population is available for
 sampling (Williams et al. 2001), and could also violate
 the equal catchability assumptions of capture-recapture
 analysis if there are seasonal differences in activity

 among different members of the population (e.g.,
 genders or size classes).

 We think that understanding the effects that behavior
 and the resulting observability of an animal is important
 to the methods that we use to estimate their population
 sizes or densities. This is an important factor to consider
 when designing and implementing survey studies, and
 this importance extends beyond studies that use distance
 to estimate population parameters.
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